

POST-NEW ORLEANS 2022 Novità dal Meeting della Società Americana di Ematologia

Novità dal Meeting della Società Americana di Ematologia

Milano Teatro Dal Verme 2-3-4 Febbraio 2023

COORDINATORI

Angelo Michele Carella Pier Luigi Zinzani

BOARD SCIENTIFIC

Paolo Corradini Mauro Krampera Fabrizio Pane Adriano Venditti

MALATTIE MICROANGIOPATICHE e EPN

Monica Carpenedo

U.O.C Ematologia ASST Fatebenefratelli-Sacco Ospedale L. Sacco, Miano Polo Didattico Università degli Studi di Milano

Milano, 2-3-4 Febbraio 2023

DICHIARAZIONE Monica Carpenedo

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Amgen					х	x	
Argenx						x	
Grifols						x	
Novartis					x	x	
Sanofi					x		
Sobi					x		

Milano, 2-3-4 Febbraio 2023

Thrombotic MicroAngiopathies (TMA) @ASH 2022

Milano, 2-3-4 Febbraio 2023

Paroxysmal Nocturnal Hemoglobinuria (PNH) @ASH 2022

Late breaking abstract session

Oral monotherapy with iptacopan, a proximal Complement Inhibitor of Factor B, has superior efficacy to intravenous terminal complement inhibition with standard of care eculizumab or ravulizumab

Oral session (Chair: Bruno Fattizzo & C)

- Vemircopan (ALXN2050) monotherapy in PNH: interim Data from a phase 2 Open label proof of concept study
- Results from the First phase 3 crovalimab (C5 inhibitor) Study COMMODORE 3: Efficacy and safety in complement naive patients with PNH

Milano, 2-3-4 Febbraio 2023

A Phase 3 Study to Evaluate the Efficacy and Safety of Caplacizumab Without First-line Theraeutic Plasma Exchange in Adults With Immunemediated Thrombotic Thrombocytopenic Purpura

Unmet need:

While TPE is considered a mainstay of iTTP treatment, it is burdensome and associated with complications^{4–6}

Although reports from real-world clinical practice suggest the efficacy of TPE-free regimens in iTTP,^{7–10} the use of caplacizumal without TPE has not been evaluated in a clinical trial setting

Aim: To evaluate the efficacy and safety of caplacizumab in combination with IST without first-line TPE in adults with iTTP

MAYARI (NCT05468320) is a:

Interventions:

- All participants will begin caplacizumab and corticosteroid therapy immediately after clinical diagnosis
- Anti-CD20 antibody therapy can be initiated after confirmation of iTTP diagnosis (ADAMTS13 activity <10%)
- If, after initiation of caplacizumab therapy, baseline ADAMTS13 activity level is found to be 10%–20%, the investigator may use their clinical judgment to decide whether to continue caplacizumab. If ADAMTS13 level is found to be >20%, caplacizumab should be discontinued
- Caplacizumab treatment will be continued until sustained ADAMTS13 activity level of ≥50% at 2 consecutive visits after platelet count normalization or 12 weeks
- Participants will not receive TPE as first-line therapy
- TPE may be started after 24 hours for lack of adequate response per prespecified criteria or clinical deterioration at any time

Sriya Gunawardena et al

Study Outcomes

Primary endpoint: Proportion of participants achieving remission without requiring TPE during overall study period

Proportion of participants achieving remission during the overall study period

Proportion of participants requiring TPE during the on-treatment period

Proportion of participants achieving a clinical response during the on-treatment period

Time to initial platelet count response ($\geq 150 \times 10^9$ /L sustained for ≥ 2 days)

Proportion of participants with iTTP-related exacerbation or death during the on-treatment period and overall study period

Definition of remission:

Sustained clinical response^a with either (a) no TPE and no anti-VWF therapy for \geq 30 days (clinical remission) or (b) with attainment of ADAMTS13 activity level \geq 50% at 2 consecutive visits (complete ADAMTS13 remission), whichever occurs first

Overall mortality during the overall study period

Safety and tolerability during the treatment-emergent period

Patient-reported clinical outcomes

Revised outcome definitions from the International Working Group for iTTP will be utilized¹

This novel study will define the efficacy and safety of caplacizumab + IST without firstline TPE in adults with iTTP

This regimen would avert the risks for substantial complications associated with TPE and represents a paradigm shift in the frontline management of iTTP

Milano, 2-3-4 Febbraio 2023

Bortezomib In Relapsed/Refractory Autoimmune-mediated Thrombotic Thrombocytopenic Purpura: A Single-center Retrospective Study And Systematic Review

<u>Nicholas C.J. Lee, MD</u>, ^{1,2} Sean Yates, MD,³ Siayareh Rambally, MD,⁴ Ravi Sarode, MD,^{3,4} Ibrahim F. Ibrahim, MD,⁴ Yu-Min Shen, MD,⁴ Sandra Hofmann, MD, PhD,⁴ and Natalie R. Bavli, MD⁴ ¹Department of Internal Medicine; ²Pediatrics; ³Division of Transfusion Medicine and Hemostasis, Department of Pathology; ⁴Division of Hematology, Department of Internal Medicine; University of Texas Southwestern, Dallas, TX

AIM:

- To report our institutional experience with bortezomib for iTTP, increasing the number of reported cases by over 25%
- Describe the first cohort of patients previously treated with caplacizumab and for ADAMTS13 relapse1-3
- Perform a systematic literature review to describe patterns of care and response to therapy

Retrospective Study

- Included all iTTP patients treated with bortezomib at University of Texas Southwestern and Parkland Health and Hospital System from 1/1/2013 to 11/1/2022
- Definitions per International Working Group Guidelines

Systematic Review

 PRISMA guideline-adherent, querying MEDLINE, Embase, and Web of Science

UTSW COHORT

- · Eight patients treated with bortezomib
- · Three patients with secondary iTTP
- Treatment indication for relapse (n=5) or refractory iTTP (n=3)
- All patients were treated with plasma exchange, corticosteroids, and rituximab
- Additional therapies included caplacizumab (38%) and cyclosporine (13%)
- Six patients (75%) had a response to bortezomib therapy
- Of the patients with a response to bortezomib therapy, one patient had a clinical relapse at 5 months
- One patient had a side effect (decreasing pulmonary function)

	Total (n=32)
Age, y, median (IQR)	45 (29-54)
Sex	
Male	8 (25)
Female	24 (75)
Previous TTP episodes, # (IQR)	0 (0-2)
Previous TTP therapies, # (IQR)	3.5 (3-4)
Previous TTP Therapies	
PLEX	31 (97)
Corticosteroids	32 (100)
Rituximab	31 (97)
Cyclophosphamide	6 (19)
Intravenous immunoglobulin	5 (16)
N-acetylcysteine	5 (16)
Capiacizumab	3 (9)
Vincristine Museebeeselete mefetil	2 (6)
	2 (0)
Splanastemy	(0)
Bortezomik indication	1 (3)
Refractory	24 (75)
Recurrent	24(13)
Refractory & recurrent	3 (9)
Biochemical Relapse	5 (16)
Bortezomib dose (n = 29)	0 (10)
1.3mg/m ²	15 (52)
1 mg/m ²	14 (48)
Bortezomib administration, initial (n=22)	
Subcutaneous	15 (68)
Intravenous	7 (32)
Bortezomib response, initial	
Complete response	22 (69)
Partial response	1 (3)
No response	6 (19)
PLEX wean	2 (6)
Decreased inhibitor	1 (3)
Bortezomib rechallenge (n=4)	4 (400)
Complete response	4 (100)
Partial response	0(0)
No response	0(0)
No relanse	20 (87)
Relanse	3 (13)
Time to relanse after hortezomik months median	7 (5-20)
(range)	7 (3-20)
(101190)	

189 articles screened

Patient and Disease Characteristics

- Median age of 45
- 75% female patients
- Bortezomib is generally used in an initial iTTP presentation

Pre-bortezomib therapy data

- Median of 3.5 therapies attempted prior to bortezomib administration
 - All patients except 2 received PLEX, corticosteroids, and rituximab (one was a Jehovah's witness)
- Indication most often for refractory (67%) or recurrent & refractory disease (19%)

. Overall response 78%

· Adverse events occurred in 14% of patients

CONCLUSIONS

- Bortezomib is a promising therapy in relapsed and refractory iTTP
- 85% of patients with a clinical response to bortezomib remained in remission with a median follow-up of 18 months
- The majority of bortezomib administration is for refractory cases (86%)
- In ADAMTS13 relapse, the complete response rate was 60% (3/5 in our cohort)
- Re-challenge with bortezomib and increasing the cumulative total dose may be a reasonable strategy, as all patients rechallenged had a complete response (4/4)
- Further randomized controlled trials needed to discern the utility of bortezomib in relapse and refractory iTTP

Milano, 2-3-4 Febbraio 2023

Silent Cerebral Infarction during iTTP Remission – Prevalence, Predictors and Impact on Cognition

iTTP survivors experience major adverse neurocognitive sequelae

- 5-fold increased risk of stroke in clinical remission
- Persistent difficulties with memory and concentration
- Possible causes of cognitive impairment in iTTP:
 - ✓ Ischemic events during acute iTTP events
 - ✓ Associated with depression, which is common in iTTP (50-80%)
 - ✓ Silent cerebral infarction (SCI) during clinical remission

Milano, 2-3-4 Febbraio 2023

Silent cerebral infarction (SCI)

SCI are ischemic lesions on brain MRI without overt neurological deficits attributable to the location of the lesion

- SCI are reported in sickle cell disease and older adults (increase with age)
- In these population, SCI are associated with:
 - ✓ Cognitive impairment
 - ✓ Future stroke

Milano, 2-3-4 Febbraio 2023

NeST (Neurological Sequelae of TTP) Study

SCI is present in 50% of iTTP survivors

42 enrolled, 36 completed MRI*

SCI present in 50%

In A and B, T2 and FLAIR imaging show hyperintense SCI lesions (yellow arrowheads). Panel C shows an old infarct on T2 sequence in the same patient 5 years prior. The SCI are new since previous imaging.

*2 excluded due to metal shrapnel or implants, 2 declined due to anxiety and claustrophobia, and another 2 could not complete the MRI due to claustrophobia

Predictors of SCI

Variable	Odds ratio	95% CI	Р
Age	1.09	1.01 - 1.16	0.021
History of stroke	10.69	1.34 - 85.43	0.025
Number of iTTP episodes	1.27	0.74 - 2.17	0.380
Hypertension	0.54	0.09 - 3.36	0.510
Black race (vs. White)	18.5	0.77 - 445.61	0.072
Other race (vs. White)	70.10	0.66 - 7465.39	0.074

Prevalence of cognitive impairment

52.3% had CI on ≥ 1 test

Most common deficits observed				
Test		Domain		
Dimensional change card sort	38.1%	Executive function		
Flanker inhibitory control and attention	26.2%	Executive function, attention		
Pattern comparison test	23.8%	Processing speed		

SCI is associated with cognitive impairment

Variable	OR (95% CI)	Р			
Any cognitive impairment					
Silent cerebral infarction	10.5 (1.45 – 76.63	0.020			
History of stroke	0.49 (0.06 - 4.19)	0.523			
BDI-II score	1.12 (1.01 – 1.25)	0.034			
Major cognitive impairment					
Silent cerebral infarction	7.98 (1.11 – 57.27)	0.039			
History of stroke	0.33 (0.04 - 2.93)	0.325			
BDI-II score	1.03 (0.95 - 1.12)	0.425			

The Role of ADAMTS13 Activity Levels on Disease Exacerbation or Relapse in Patients With Immune-Mediated Thrombotic Thrombocytopenic Purpura: Post Hoc Analysis of the Phase 3 HERCULES and Post-HERCULES Studies

Johanna A. Kremer Hovinga,^{1,a} Javier de la Rubia,² Katerina Pavenski,³ Ara Metjian,⁴ Paul Knöbl,⁵ Flora Peyvandi,^{6,7} Spero Cataland,⁸ Paul Coppo,⁹ Umer Khan,¹⁰ Laurel A. Menapace,¹¹ Ana Paula Marques,¹² Sriya

Study Design

- This post hoc analysis included all patients from HERCULES who received at least 1 dose of caplacizumab or placebo (mITT population) and were followed until the end of HERCULES or post-HERCULES
- ADAMTS13 activity levels were determined at baseline, weekly during the treatment period starting with the first day after end of TPE, and twice during follow-up
- A threshold of <10% ADAMTS13 activity was not part of the inclusion criteria in HERCULES
- Risk of events, including exacerbations and relapses, was assessed according to ADAMTS13 activity at baseline or end of HERCULES study drug treatment^b

Definitions

- iTTP events were defined based on adverse event codes of "thrombotic thrombocytopenic purpura"
- HERCULES: exacerbations were defined as recurrences during the double-blind treatment period post-TPE, and relapses as recurrences after the double-blind treatment period
- Post-HERCULES: exacerbations were defined as recurrences occurring ≤30 days after end of study treatment, and relapses occurring >30 days after end of study treatment

ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; Ctd, continued; exchange; TTP, thrombotic thrombocytopenic purpura; wk, week.

^aTPE treatment period was of variable duration. ^bCox proportional hazard models were performed to evaluate risk of event.

FU, follow-up; iTTP, immune-mediated thrombotic thrombocytopenic purpura; mITT, modified intention-to-treat; TPE, therapeutic plasma

The objective of this study was to evaluate ADAMTS13 activity as a potential biomarker of exacerbation or relapse risk using post hoc analyses of integrated data from the HERCULES and post-HERCULES studies

Milano, 2-3-4 Febbraio 2023

Subsequent iTTP Events According to ADAMTS13 Activity at End of HERCULES Study Drug Treatment Period

ADAMTS13 level at end of HERCULES study drug treatment, pooled across treatment groups and studies ^a						
	Exacei	rbation	Relapse			
	Yes	No	Yes	No		
	Proportion of people with event					
n (%)	29 (20.7)	111 (79.3)	15 (10.7)	125 (89.3)		
	ADAMTS13 activity at end of treatment					
Median	5.0	60.8	2.5	51.7		
(min, max)	(1.0, 77.0)	(1.0, 119.0)	(1.0, 90.4)	(1.0, 119.0)		
P-value ^b	<0.0001 0.0)150			
		Distributi	on, n (%) ^c			
<10%	21 (72.4)	26 (23.4)	10 (66.7)	37 (29.6)		
≥10% and <20%	1 (3.5)	5 (4.5)	0	6 (4.8)		
≥20%	7 (24.1)	75 (67.6)	5 (33.3)	77 (61.6)		
P-value ^d	<0.0001		0.0421			
<50%	26 (89.7)	43 (38.7)	11 (73.3)	58 (46.4)		
≥50%	3 (10.3)	63 (56.8)	4 (26.7)	62 (49.6)		
P-value ^d	<i>P</i> -value ^d <0.0001		0.0992			

- In the HERCULES mITT population, 140/144 patients had follow-up data after end of HERCULES study drug treatment
- Of these patients, <u>39 (27.9%)</u> had events in HERCULES or post-HERCULES after end of treatment
 - Median ADAMTS13 activity was lower in those who experienced an exacerbation or relapse compared with those who did not (*P*<0.05)
- The proportion of patients with an ADAMTS13 activity <10% or <20% at end of treatment was greater among those with an exacerbation or relapse versus those without (*P*<0.05)
- The proportion of patients with an ADAMTS13 activity <50% at end of treatment was greater among those with an exacerbation versus those without (*P*<0.0001)

Regardless of the treatment received (caplacizumab or placebo), lower ADAMTS13 activity levels at end of treatment were associated with a higher risk of an event in the HERCULES and post-HERCULES studies

Trial in Progress: An Open-Label, Multi-Center Phase 2 Study Evaluating Efficacy and Safety of the MASP-2 Inhibitor Narsoplimab in Pediatric Patients with High-Risk Hematopoietic Stem Cell Transplant-Associated Thrombotic Microangiopathy (HSCT-TMA)

BACKGROUND

- HSCT-TMA (also known as TA-TMA) is a potentially life-threatening complication associated with multi-organ injury and significant morbidity and mortality^{1,2}
- In the HSCT setting, endothelial injury triggers activation of the lectin pathway of complement and in turn the coagulation cascade, together leading to TMA¹
- Narsoplimab (OMS721) inhibits MASP-2, the effector enzyme of the lectin pathway and an activator of the coagulation cascade^{1,3}
- Narsoplimab was previously evaluated for safety and efficacy in adults with high-risk HSCT-TMA in an open-label pivotal trial (NCT02222545)³

OBJECTIVE: The purpose of this Phase 2 study is to evaluate the safety, efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of narsoplimab in high-risk pediatric-aged patients with TMA following HSCT

MASP 2: Mannan binding lectin-associated serine protease-2

Pullman W et al

METHODS: Key Inclusion and Exclusion Criteria

Key Inclusion and Exclusion Criteria

Inclusion Criteria

- Age ≥28 days to <18 years
- alloHSCT recipient (treatment of non-malignant or malignant disease)
 - All donor cell sources permitted:
 - Matched, mismatched, haploidentical
 - o Related, unrelated
 - Bone marrow, peripheral blood stem cells, and umbilical cord blood
- · High-risk HSCT-TMA diagnosis
- Met ≥1 HSCT-TMA high-risk criterion

Exclusion Criteria

- Prior treatments with eculizumab, ravulizumab, or defibrotide within 3 months
- STEC-HUS
- ADAMTS13 activity <10%
- Severe, uncontrolled systemic bacterial or fungal infection requiring antimicrobial therapy
- · Malignant hypertension
- Abnormal liver function (ALT or AST >5× ULN)

High-risk HSCT-TMA Diagnosis Definition

Criteria	Definition			
Platelet count	<50,000/µL or a ≥50% decrease in platelet count from the highest value obtained following transplant			
and at least one of the following:				

Evidence of microangiopathic hemolysis • Presence of schistocytes (per high-power field) • Serum LDH (>ULN) • Haptoglobin (<LLN)

High-risk HSCT-TMA Criteria

Criteria	Definition		
1. HSCT-TMA persistence	≥2 weeks following modification of CNI or sirolimus		
or			
2. Evidence of ≥1 one of the following:	 Spot P/C >2 mg/mg Serum creatinine >1.5× pre-TMA level Biopsy-proven GI TMA TMA-related neurological abnormality Pericardial or pleural effusion* Pulmonary hypertension* Grade III or Grade IV GVHD[†] Elevated serum C5b-9 >244 ng/mL 		

*Without alternative explanation; †Or at risk of Grade III or Grade IV GVHD if immunosuppression was to be modified.

alloHSCT, allogeneic HSCT; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CNI, calcineurin inhibitor; GI, gastrointestinal; GVHD, graft-versus-host disease; LDH, lactate dehydrogenase; LLN, lower limit of normal; P/C, protein/creatinine; STEC-HUS, Shiga toxin-producing *Escherichia coli* hemolytic uremic syndrome; ULN, upper limit of normal.

Milano, 2-3-4 Febbraio 2023

METHODS: Trial Design

*Clinical response is defined as improvement in laboratory TMA markers and clinical benefit; †Patients ending treatment early who agree to remain in the study will enter into follow-up; ‡Patients who withdraw from the study prior to completion, either during a treatment or a follow-up visit, will have assessments for the last follow-up visit, if possible. ADA, anti-drug antibody; BIW, twice weekly; IV, intravenous; PK, pharmacokinetics; QW, once weekly.

METHODS: Definition of Clinical Response in Pediatric HSCT-TMA Patients

Improvement in TMA Laboratory Markers								
LDH <1.5× ULN	LDH + Baseline <1.5× ULN Triple baseline and a and no platelet t		t count Baseline >20 × 10 ⁹ /L: Increase by ≥50% and absolute count >75 × 10 ⁹ /L and no platelet transfusions for 2 days					
	and							
	Improvement in Clinical Status in at Least One Organ							
Blood Freedom from transfusions for at least 4 weeks	Kidney Good Reduction of creatinine >40% Or Creatinine below the upper limit of normal and reduction of creatinine >20% Or Discontinuation of renal replacement therapy	Pulmonary Extubation and discontinuation of ventilator support Or Discontinuation of non-invasive mechanical ventilation	Neurologic Improvement in reversible or stabilization of irreversible neurological conditions	GI FFF Improvement assessed using GI measures in the MAGIC criteria				

MAGIC, Mount Sinai Acute GVHD International Consortium.

CONCLUSIONS

- Following the favorable results obtained in a pivotal Phase 2 study in adults with HSCT-TMA, further evaluation of narsoplimab in pediatric patients with high-risk HSCT-TMA is warranted
- This is the first clinical trial evaluating the efficacy and safety of narsoplimab in high-risk pediatric patients with HSCT-TMA

Milano, 2-3-4 Febbraio 2023

PNH

Oral monotherapy with iptacopan, a proximal complement inhibitor of factor B, has superior efficacy to intravenous terminal complement inhibition with standard of care eculizumab or ravulizumab and favorable safety in patients with paroxysmal nocturnal hemoglobinuria and residual anemia: Results from the randomized, active-comparator-controlled, open-label, multicenter, Phase III APPLY-PNH study

- PNH is a rare, chronic hematological disorder characterized by intravascular hemolysis, thrombophilia and bone marrow failure^{1,2}
- PNH is caused by a somatic mutation in the PIGA gene, resulting in a lack of the GPI-anchored complement-regulating proteins CD55 and CD59, leading to intravascular hemolysis^{1,2}
- Targeting the terminal complement pathway at C5 with SoC eculizumab and ravulizumab controls intravascular hemolysis, reduces thrombosis and improves overall survival³⁻⁹
- Up to two-thirds of patients have clinically meaningful residual anemia, largely because of emerging extravascular hemolysis; consequently, some patients are transfusion dependent^{1,10}

Milano 2-3-4 Febbraio 2023

Iptacopan is a first-in-class, oral, selective factor B inhibitor that targets the complement system proximally via the alternative pathway¹

Iptacopan binds to the active site of factor B, inhibiting the activity of C3 convertase¹

Iptacopan controlled intra- and extravascular hemolysis in 10 patients with a suboptimal response to eculizumab, leading to transfusion independence and an improved guality of life²

THE LANCET Haematology

Addition of iptacopan, an oral factor B inhibitor, to eculizumab in patients with paroxysmal nocturnal haemoglobinuria and active haemolysis: an open-label, single-arm, phase 2, proof-of-concept trial

Antonio M. Risitana, Alexander Röth, Juliette Soret, Camilla Frieri, Flore Sicre de Fanthrune, Luana Marano, Ferras Alashkar, Lina Benajiba, Serena Marotta, Izahela Rozenberg, Julie Milojevic, Peter End, Prosanna K. Nidamarthy, Guido Junge, Régis Peffavit de Latour

Material from The Lancet Haematology is used with permission 1. Schubart A et al. Proc Natl Acad Sci USA 2019;116:7926–31; 2. Risitano AM et al. Lancet Haematol 2021;8:e344–54

Milano, 2-3-4 Febbraio 2023

APPLY-PNH is an open-label, randomized, multicenter, Phase III trial investigating iptacopan monotherapy in PNH patients with residual anemia despite SoC therapy (NCT04558918)¹

*With a stable regimen of eculizumab or ravulizumab for at least 6 months preceding randomization; !Stratified by prior anti-C5 treatment and RBC transfusions in the preceding 6 months bid, twice daily; Hb, hemoglobin; IV, intravenous; RBC, red blood cell; WBC, white blood cell

1. ClinicalTrials.gov. NCT04558918. Available at: https://clinicaltrials.gov/ct2/show/NCT04558918 (accessed November 2022);

2. ClinicalTrials.gov. NCT04747613. Available at: https://clinicaltrials.gov/ct2/show/NCT04747613 (accessed November 2022)

Oral presented at the 64th ASH Annual Meeting, held in person in New Orleans, LA, USA and virtually on 10-13 December 2022

Dav

Novità dal Meeting della Società Americana di Ematologia

Milano, 2-3-4 Febbraio 2023 APPLY-PNH is an open-label, randomized, multicenter, Phase III trial investigating iptacopan monotherapy in PNH patients with residual anemia despite SoC therapy (NCT04558918)¹ 24-week randomized Randomization Patients (N=97) treatment period ≥18 years of age We report primary efficacy and PNH diagnosis (RBC and safety data from the 24-week Oral iptacopan WBC clone size ≥10%) 8:5† 200 mg bid (n=62) randomized treatment period of Clinically significant extravascular hemolysis APPLY-PNH, which concluded on despite treatment:* IV anti-C5 SoC 26 September 2022 Mean Hb <10 g/dL (as before randomization) Reticulocytes (n=35) ≥100 x 10⁹/L Screening period (8 weeks)

*With a stable regimen of eculizumab or ravulizumab for at least 6 months preceding randomization; !Stratified by prior anti-C5 treatment and RBC transfusions in the preceding 6 months bid, twice daily; Hb, hemoglobin; IV, intravenous; RBC, red blood cell; WBC, white blood cell

1. ClinicalTrials.gov. NCT04558918. Available at: https://clinicaltrials.gov/ct2/show/NCT04558918 (accessed November 2022);

2. ClinicalTrials.gov. NCT04747613. Available at: https://clinicaltrials.gov/ct2/show/NCT04747613 (accessed November 2022)

Oral presented at the 64th ASH Annual Meeting, held in person in New Orleans, LA, USA and virtually on 10-13 December 2022

168

Milano, 2-3-4 Febbraio 2023

APPLY-PNH is a superiority trial with two primary endpoints

Primary

- Hematological response defined as an increase from baseline in Hb of ≥2 g/dL* in the absence of RBC transfusions[†]
- Hematological response defined as Hb ≥12 g/dL* in the absence of RBC transfusions[†]

Secondary

- Transfusion avoidance[†]
- Change from baseline:
 - Hb levels[‡]
 - FACIT-Fatigue scores
 - Absolute reticulocyte count
 - LDH levels
- Occurrences of clinical breakthrough hemolysis and MAVEs§
- Safety[§]

*Assessed between Days 126 and 168; ¹Between Days 14 and 168 and neither meeting the criteria for administration of an RBC transfusion nor receiving an RBC transfusion between Days 14 and 168; ¹Excluding values within 30 days of RBC transfusion; ¹Throughout the study The overall study Type I error rate was controlled at the one-sided 2.5% level. All presented *P* values are two-sided and unadjusted FACIT, Functional Assessment of Chronic Illness Therapy; LDH, tactate dehydrogenase; MAVE, major adverse vascular event 1. Bretz F *et al.* Stat Med 2009;28:588–604; 2. Bretz F *et al.* Stat Med 2011;30:1489–501

Milano, 2-3-4 Febbraio 2023

Demographics and disease characteristics at baseline were generally balanced between arms

	lptacopan 200 mg bid N=62	Anti-C5 SoC N=35	Overall N=97
Mean age, years (SD)	51.7 (16.9)	49.8 (16.7)	51.0 (16.8)
Female, n (%)	43 (69.4)	24 (68.6)	67 (69.1)
Time since diagnosis, years (SD)	11.9 (9.8)	13.6 (10.9)	12.5 (10.2)
Anti-C5 SoC Eculizumab,* n (%) Ravulizumab,* n (%) Mean duration, years (SD)	40 (64.5) 22 (35.5) 3.8 (3.5)	23 (65.7) 12 (34.3) 4.2 (3.9)	63 (64.9) 34 (35.1) 4.0 (3.6)
Received RBC transfusions,* n (%)	35 (56.5)	21 (60.0)	56 (57.7)
Mean baseline Hb, g/dL (SD) [range]	8.9 (0.7) [6.8–10.0]	8.9 (0.9) [6.2–9.9]	8.9 (0.8) [6.2–10.0]
Mean baseline LDH, U/L (SD) [range]	269.1 (70.1) [150-539]	272.7 (84.8) [133-562]	270.4 (75.3) [133-562]
Baseline LDH >1.5 x ULN, n (%)	4 (6.5)	3 (8.6)	7 (7.2)
Mean baseline absolute reticulocyte count, 10 ⁹ /L (SD) [range]	193.2 (83.6) [51–563]	190.6 (80.9) [90–412]	192.3 (82.3) [51–563]

*In the 6 months prior to randomization

SD, standard deviation; ULN, upper limit of normal

Oral presented at the 64th ASH Annual Meeting, held in person in New Orleans, LA, USA and virtually on 10–13 December 2022

Milano, 2-3-4 Febbraio 2023

Iptacopan monotherapy was superior to SoC for both primary endpoints

*2/62 patients in the iptacopan arm had missing data between Days 126 and 168 so were not evaluable based on observed data; 1Marginal proportions, differences in marginal proportions and 95% CIs were calculated using a logistic regression model using the Firth correction that adjusted for baseline covariates and accounted for missing data and the possibility of no patients meeting the primary endpoint criteria in the SoC arm; consequently, the treatment effect of iptacopan is underestimated and the treatment effect of SoC is overestimated. Marginal proportions reflect the population average probability of a patient meeting the primary endpoint criteria; 1P values are two-sided and unadjusted. CI, confidence interval

Oral presented at the 64th ASH Annual Meeting, held in person in New Orleans, LA, USA and virtually on 10–13 December 2022

Milano, 2-3-4 Febbraio 2023

Iptacopan monotherapy was superior to SoC for transfusion avoidance

*Marginal proportions, differences in marginal proportions and 95% CIs were calculated using a logistic regression model that adjusted for baseline covariates and accounted for missing data. Marginal proportions reflect the population average probability of a patient meeting the endpoint criteria; 1P values are two-sided and unadjusted

Oral presented at the 64th ASH Annual Meeting, held in person in New Orleans, LA, USA and virtually on 10–13 December 2022

Milano, 2-3-4 Febbraio 2023

Secondary efficacy end points and safety

Iptacopan monotherapy was superior to SoC at reducing ARC from baseline, demonstrating control of extravascular hemolysis

Adjusted mean difference in change from baseline* in ARC:

> -116.26 x 10⁹/L (95% CI -132.17, -100.36) P<0.0001^{1,4}

Iptacopan monotherapy maintained LDH levels upon switching from SoC, indicating control of intravascular hemolysis

> Adjusted mean ratio to baseline* in log-transformed LDH level:

0.96 [95% CI 0.90, 1.03] versus 0.98 [0.89, 1.07]

(not significantly different⁵)

Any TEAE: 82.3% versus 80.3%

- Headache (16.1% vs 2.9%) and diarrhea (14.5% vs 5.7%) were more commonly reported with iptacopan
- COVID-19 (8.1% vs 25.7%) and breakthrough hemolysis (3.2% vs 17.1%) were more commonly reported with SoC

Safety

- Serious TEAEs: 9.7% versus 13.4%
- No serious infections caused by encapsulated bacteria
- No patients discontinued study treatment because of TEAEs
- No deaths

Iptacopan monotherapy was superior to SoC for annualized rate of breakthrough hemolysis^T

Patients with at least one event:1

2/62 versus 6/35

Annualized rate ratio = 0.10 (95% CI 0.02, 0.61)

P=0.01181.5

Only one MAVE in the study

- Transient ischemic attack in the iptacopan arm
- Considered unrelated to iptacopan
- Patient had concomitant sick sinus syndrome and is continuing to receive iptacopan

Vemircopan (ALXN2050) Monotherapy in Paroxysmal Nocturnal Hemoglobinuria: Interim Data From a Phase 2 Open-Label Proof-of-Concept Study

Browett P,Kulasekararaj AG, Notaro R, Ogawa M, Risitano A, Yu J, Lee JW

- Second-in-class oral Factor D inhibitor, vemircopan (ALXN2050), has the same mechanism of action as danicopan
- Vemircopan demonstrates increased potency and binding affinity for Factor D and is being developed as monotherapy for PNH
 - Vemircopan achieves rapid, complete, and sustained AP inhibition with BID oral administration¹

BACKGROUND ROLE OF FACTOR D

- Factor D inhibitors block the complement AP¹ and may inhibit IVH while preventing EVH
- Factor D is an attractive target with lower plasma concentration compared to C3 and Factor B²
 - The oral factor D inhibitor danicopan (ALXN2040) showed efficacy as an add-on treatment to the C5 inhibitor eculizumab³
 - There was unfavorable PK/PD blockade of FD in some patients when treated with danicopan as a monotherapy⁴

PHASE 2 STUDY DESIGN (NCT04170023)

*12-week data based on a data cutoff of 30 April 2022.

ARC, absolute reticulocyte count; BID, twice daily; ecu, eculizumab; FACIT-Fatigue, Functional Assessment of Chronic Illness Therapy – Fatigue; Hgb, hemoglobin; LDH, lactate dehydrogenase; PNH, paroxysmal nocturnal hemoglobinuria; ULN, upper limit of normal.

N= 11

PRIMARY ENDPOINT: VEMIRCOPAN TREATMENT RESULTED IN AN INCREASE IN MEAN HEMOGLOBIN FROM BASELINE TO WEEK 12

Change from baseline is calculated in the same number of patients at week 12.

*1 patient taking a 120-mg dose received blood transfusion on day 2 due to low hemoglobin of 5.1 g/dL

LLN, lower limit of normal; ULN, upper limit of normal.

LLN, lower limit of normal; ULN, upper limit of normal.

300.0 216.1 250.0 200.0 142.2 142.8 119.3 120.0 114.7 150.0 105.6 110×10%/L 100.0 (ULN) 92.4×10%/L 50.0 - 30 × 10% (LLN) Baseline 1 2 12 3 4 6 10 (n=11) (n=7) (n=9) (n=9) (n=11) (n=8) Wook Change from baseline is calculated only for patients who have data for both baseline and week 12.

TREATMENT LED TO DECREASE IN MEA COUNT FROM BASELINE TO WEEK 12

In this interim analysis of treatment-naive participants with PNH, vemircopan monotherapy controlled IVH (demonstrated by reduction in LDH to <1.5xULN)

Vemircopan monotherapy prevented clinically significant EVH (demonstrated by 3.9 g/dL increase in Hgb level and ARC reduction) in the treatment-naive participants

Participants were less fatigued, as reflected by an improvement of 13.3 in the FACIT-Fatigue score

Vemircopan was well tolerated with no new safety signals identified during the 12-week evaluation period

VEMIRCOPAN TREATMENT LED TO DECREASE IN MEAN LDH FROM BASELINE TO WEEK 12

Data cutoff date: April 30, 2022

Milano, 2-3-4 Febbraio 2023

CONCLUSIONI

- TMA:
 - In studio un nuovo paradigma di trattamento della fase acuta di TTP almeno in pazienti con presentazione meno grave
 - Maggiore attenzione verso i pazienti in remissione, per studiare e limitare gli esiti a distanza, per identificare i pazienti ad alto rischio di relapse e trattare più efficacemente i refrattari/recidivati
 - Nuova potenziale terapia nelle HSCT-TMA
- EPN:
 - nuove molecole per nuovi target della cascata del complemento per ottimizzare il controllo dell'emolisi intra ed extravascolare

GRAZIE PER L'ATTENZIONE

"There is always light behind the clouds"